Microsoft SQL Server

Is a relational database management system developed by Microsoft. As a database server, it is a software product with the primary function of storing and retrieving data as requested by other software applications—which may run either on the same computer or on another computer across a network (including the Internet).

Microsoft markets at least a dozen different editions of Microsoft SQL Server, aimed at different audiences and for workloads ranging from small single-machine applications to large Internet-facing applications with many concurrent users.

Architecture

The protocol layer implements the external interface to SQL Server. All operations that can be invoked on SQL Server are communicated to it via a Microsoft-defined format, called Tabular Data Stream (TDS). TDS is an application layer protocol, used to transfer data between a database server and a client. Initially designed and developed by Sybase Inc. for their Sybase SQL Server relational database engine in 1984, and later by Microsoft in Microsoft SQL Server, TDS packets can be encased in other physical transport dependent protocols, including TCP/IP, named pipes, and shared memory. Consequently, access to SQL Server is available over these protocols. In addition, the SQL Server API is also exposed over web services.

Buffer management

SQL Server buffers pages in RAM to minimize disk I/O. Any 8 KB page can be buffered in memory, and the set of all pages currently buffered is called the buffer cache. The amount of memory available to SQL Server decides how many pages will be cached in memory. The buffer cache is managed by the Buffer Manager.

Either reading from or writing to any page copies it to the buffer cache. Subsequent reads or writes are redirected to the in-memory copy, rather than the on-disc version. The page is updated on the disc by the Buffer Manager only if the in-memory cache has not been referenced for some time. While writing pages back to disc, asynchronous I/O is used whereby the I/O operation is done in a background thread so that other operations do not have to wait for the I/O operation to complete. Each page is written along with its checksum when it is written. When reading the page back, its checksum is computed again and matched with the stored version to ensure the page has not been damaged or tampered with in the meantime.